Exercise 53

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=x+\frac{1}{x}, \quad[0.2,4]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x+\frac{1}{x}\right) \\
& =1-\frac{1}{x^{2}} \\
& =\frac{x^{2}-1}{x^{2}}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve both equations for x.

$$
\begin{array}{rlr}
x^{2}-1=0 & x^{2}=0 \\
(x+1)(x-1)=0 & x=0 \\
x=-1 \text { or } x=1 & x=0
\end{array}
$$

These are the critical numbers. Only $x=1$ is within $[0.2,4]$, so evaluate f here.

$$
f(1)=1+\frac{1}{1}=2 \quad \text { (absolute minimum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{gather*}
f(0.2)=0.2+\frac{1}{0.2}=5.2 \tag{absolutemaximum}\\
f(4)=4+\frac{1}{4}=4.25
\end{gather*}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[0.2,4]$.

The graph of the function below illustrates these results.

